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Figure 6.2 Core OS functionality
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Figure 6.3 Address space
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Figure 6.4 Copy-on-write
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Figure 6.5 Client and server with threads
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Figure 6.6 Alternative server threading architectures (see also Figure 6.5)
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Figure 6.7 State associated with execution environments and threads
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Figure 6.8 Java thread constructor and management methods

 Thread(ThreadGroup group, Runnable target, String name) 
Creates a new thread in the SUSPENDED state, which will belong to group and be 
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and otherwise its 
own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE. 

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.

destroy()
Destroy the thread.



Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 3    ©  Pearson Education 2001 9

Figure 6.9 Java thread synchronization calls

thread.join(int millisecs)
Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or notifyAll() on object wakes 
the thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have called wait() on object. 
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Figure 6.11 Invocations between address spaces (cont’d on next slide)
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Figure 6.11 (cont’d)  Invocations between address spaces
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Figure 6.12 RPC delay against parameter size
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Figure 6.13 A lightweight remote procedure call
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Figure 6.14 Times for serialised and concurrent invocations 
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Figure 6.15 Monolithic kernel and microkernel
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Figure 6.16 The role of the microkernel
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