
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 1

Applications, services

Computer &

Figure 6.1 System layers

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 2

Figure 6.2 Core OS functionality

Communication
manager

Thread manager Memory manager

Supervisor

Process manager

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 3

Figure 6.3 Address space

Stack

Text

Heap

Auxiliary
regions

0

2N

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 4

Figure 6.4 Copy-on-write

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 5

Figure 6.5 Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates
results

Requests

Receipt &
queuing

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 6

Figure 6.6 Alternative server threading architectures (see also Figure 6.5)

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 7

Figure 6.7 State associated with execution environments and threads

Execution environment Thread

Address space tables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 8

Figure 6.8 Java thread constructor and management methods

 Thread(ThreadGroup group, Runnable target, String name)
Creates a new thread in the SUSPENDED state, which will belong to group and be
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and otherwise its
own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE.

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.

destroy()
Destroy the thread.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 9

Figure 6.9 Java thread synchronization calls

thread.join(int millisecs)
Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or notifyAll() on object wakes
the thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have called wait() on object.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 10

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

Figure 6.10 Scheduler activations

A. Assignment of virtual processors
 to processes

B. Events between user-level scheduler & kernel
 Key: P = processor; SA = scheduler activation

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 11

Figure 6.11 Invocations between address spaces (cont’d on next slide)

Control transfer via
trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via
privileged instructions

Thread 1 Thread 2

Protection domain
boundary

(a) System call

(b) RPC/RMI (within one computer)

Kernel

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 12

Figure 6.11 (cont’d) Invocations between address spaces

(c) RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 13

Figure 6.12 RPC delay against parameter size

1000 2000

RPC delay

Requested data
size (bytes)

Packet
size

0

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 14

Figure 6.13 A lightweight remote procedure call

1. Copy args

2. Trap to Kernel

4. Execute procedure
and copy results

Client

User stub

Server

Kernel

stub

3. Upcall 5. Return (trap)

A
 A stack

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 15

Figure 6.14 Times for serialised and concurrent invocations

Client Server

execute request

Send

Receive
unmarshal

marshal

Receive
unmarshal

process results

marshal
Send

process args

marshal
Send

process args

transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

marshal
Send

process args

marshal
Send

process args

execute request

Send

Receive
unmarshal

marshal

execute request

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results
time

Client Server

Serialised invocations Concurrent invocations

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 16

Figure 6.15 Monolithic kernel and microkernel

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel code and data:

.......

.......

Key:

S4

S1

S1 S2 S3
S2 S3 S4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Pearson Education 2001 17

Figure 6.16 The role of the microkernel

Middleware

Language
support

subsystem

Language
support

subsystem

OS emulation
subsystem

Microkernel

Hardware

The microkernel supports middleware via subsystems

